(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0) → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0) → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0), c)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0', c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0'), c)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0', c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0'), c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
foldB,
f,
foldC,
f',
f''They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(6) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldB, foldC, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(8) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldB, foldC, f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(10) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldB, foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(12) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC, foldB
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0',
0',
0'),
gen_0':s4_0(
n172_0)) →
triple(
gen_0':s4_0(
n172_0),
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n172
0)
Induction Base:
foldC(triple(0', 0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0', 0')
Induction Step:
foldC(triple(0', 0', 0'), gen_0':s4_0(+(n172_0, 1))) →RΩ(1)
f(foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)), C) →IH
f(triple(gen_0':s4_0(c173_0), gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(s(gen_0':s4_0(n172_0)), 0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(s(gen_0':s4_0(n172_0)), 0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(s(gen_0':s4_0(n172_0)), 0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(s(gen_0':s4_0(n172_0)), 0', 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldB, f, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldB(
triple(
0',
0',
0'),
gen_0':s4_0(
n2798_0)) →
triple(
gen_0':s4_0(
n2798_0),
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n2798
0)
Induction Base:
foldB(triple(0', 0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0', 0')
Induction Step:
foldB(triple(0', 0', 0'), gen_0':s4_0(+(n2798_0, 1))) →RΩ(1)
f(foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)), B) →IH
f(triple(gen_0':s4_0(c2799_0), gen_0':s4_0(0), gen_0':s4_0(0)), B) →RΩ(1)
f'(triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), g(B)) →RΩ(1)
f'(triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(s(gen_0':s4_0(n2798_0)), 0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(s(gen_0':s4_0(n2798_0)), 0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(s(gen_0':s4_0(n2798_0)), 0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(s(gen_0':s4_0(n2798_0)), 0', 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldC, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(20) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldC, f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(22) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(24) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(25) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0',
0',
0'),
gen_0':s4_0(
n5510_0)) →
triple(
gen_0':s4_0(
n5510_0),
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n5510
0)
Induction Base:
foldC(triple(0', 0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0', 0')
Induction Step:
foldC(triple(0', 0', 0'), gen_0':s4_0(+(n5510_0, 1))) →RΩ(1)
f(foldC(triple(0', 0', 0'), gen_0':s4_0(n5510_0)), C) →IH
f(triple(gen_0':s4_0(c5511_0), gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(n5510_0), gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(n5510_0), gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(s(gen_0':s4_0(n5510_0)), 0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(s(gen_0':s4_0(n5510_0)), 0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(s(gen_0':s4_0(n5510_0)), 0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(s(gen_0':s4_0(n5510_0)), 0', 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(26) Complex Obligation (BEST)
(27) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n5510_0)) → triple(gen_0':s4_0(n5510_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n55100)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0', 0'), gen_0':s4_0(n5510_0)) → triple(gen_0':s4_0(n5510_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n55100)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n5510_0)) → triple(gen_0':s4_0(n5510_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n55100)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0', 0'), gen_0':s4_0(n5510_0)) → triple(gen_0':s4_0(n5510_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n55100)
(32) BOUNDS(n^1, INF)
(33) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
foldB(triple(0', 0', 0'), gen_0':s4_0(n2798_0)) → triple(gen_0':s4_0(n2798_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n27980)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(34) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
(35) BOUNDS(n^1, INF)
(36) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
a,
b,
c),
C) →
triple(
a,
b,
s(
c))
f'(
triple(
a,
b,
c),
B) →
f(
triple(
a,
b,
c),
A)
f'(
triple(
a,
b,
c),
A) →
f''(
foldB(
triple(
s(
a),
0',
c),
b))
f''(
triple(
a,
b,
c)) →
foldC(
triple(
a,
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(37) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0', 0'), gen_0':s4_0(n172_0)) → triple(gen_0':s4_0(n172_0), gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1720)
(38) BOUNDS(n^1, INF)